Li Sun

🗞 lisun-ai.github.io 🗘 github.com/lisun-ai 🔽 lisun@bu.edu └(412)-209-5278

RESEARCH INTERESTS

Machine learning:	Un-/Self-supervised learning, Multi-modal learning, Diffusion models
Natural language processing:	Large language model, Model robustness

EDUCATION

Boston University

Ph.D. student in Computer Engineering GPA: 4.0/4.0, advisor: Prof. Kayhan Batmanghelich

University of Pittsburgh

Ph.D. student in Intelligent Systems (Transferred to BU)M.Sc. in Intelligent Systems (Artificial Intelligence)GPA: 3.9/4.0, advisor: Prof. Kayhan Batmanghelich

SELECTED PUBLICATIONS

Sun, L., Luisier, F., Batmanghelich, K., Florencio, D., & Zhang, C. (2023).
From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding. In *Proceedings of the Annual Meeting* of the Association for Computational Linguistics (ACL). Best Papers Honorable Mention

Robinson, J., **Sun, L.**, Yu, K., Batmanghelich, K., Jegelka, S., & Sra, S. (2021). Can contrastive learning avoid shortcut solutions? In *Advances in Neural Information Processing Systems (NeurIPS)*.

Sun, L.#, Yu, K.#, & Batmanghelich, K. (2021). Context Matters: Graph-based Self-supervised Representation Learning for Medical Images. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*.

Saeedi, A., Utsumi, Y., **Sun, L.**, Batmanghelich, K. & Lehman L. (2022). Knowledge Distillation via Constrained Variational Inference. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*.

Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., & Batmanghelich, K. (2022). Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis. In *IEEE journal of biomedical and health informatics*

Xu, Y.#, **Sun, L.**#, Peng, W.#, Visweswaran, S., & Batmanghelich, K. (2023). MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images. Under review in *IEEE Transactions on Medical Imaging*.

WORK EXPERIENCE

Meta

Research Scientist Intern, PyTorch Team

- Worked on leveraging large language models for improved visual representation learning.

- Developed a token-level visualization method for explanation of large multi-modal models.
- Studied the robustness and generalizability of visual representation from large

multi-modal models.

Microsoft

Research Intern, Microsoft Azure AI - Designed and implemented a hierarchical language model for open-vocabulary Jan 2023 - June 2024 (Expected) Boston, MA

> Aug 2019 - Dec 2022 Pittsburgh, PA

May 2023 - Sept 2023 New York, NY

June 2022 - Aug 2022 Bellevue, WA language understanding

- Experiments demonstrated that our model outperforms baselines, and it is more

robust to textual corruptions and domain shifts

- Manuscript accepted by ACL

Microsoft

Research Intern, Microsoft Research Asia (MSRA) - Developed fine-grained model that makes use of anatomical structure for chest radiograph interpretation

- Achieved improved results on thoracic diseases that are subtle and require close observation

- Developed reinforcement learning model for interpretable life support device detection

TECHNICAL SKILLS

Languages:	Python, R, Shell, Java, C++	
Softwares:	PyTorch, Tensorflow	

RESEARCH EXPERIENCE

 Diffusion Model for 3D Medical Image Synthesis Mentor: Prof. Kayhan Batmanghelich, Boston University Built a two-stage denoising diffusion model for generating high-resolution 3D CT scans, in a memory-efficient way. Developed a method for synthesizing images guided by textual prompts and anatomical components. 	Oct 2022 - Sep 2023
 Avoiding Shortcut Solutions in Contrastive Learning Mentor: Prof. Suvrit Sra, MIT & Prof. Kayhan Batmanghelich, University of Pittsburgh Analyzed feature suppression in contrastive learning, and explained why feature suppression can occur when optimizing the InfoNCE loss Proposed implicit feature modification, a simple and efficient method that reduces the tendency to use feature suppressing shortcut solutions and improves generalization Highlighted by World Economic Forum and MIT News 	Nov 2020 - May 2021
Context-aware Self-supervised Learning for Medical Images Mentor: Prof. Kayhan Batmanghelich, University of Pittsburgh - Proposed a self-supervised representation learning method for volumetric medical images that accounts for anatomical context - Proposed method that provides task-specific explanation for the predicted outcome - Short version accepted by Medical Imaging meets NeurIPS workshop (Oral), long version paper accepted by AAAI	May 2020 - Sept 2020
 Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis Mentor:Prof. Kayhan Batmanghelich, University of Pittsburgh Proposed a novel end-to-end GAN architecture that can generate high-resolution volumetric images while being memory efficient Discovered that moving along certain directions in latent space results in explainable anatomical variations in generated images Paper accepted by IEEE journal of biomedical and health informatics 	Jan 2020 - Nov 2020
 Brain Tumor Segmentation and Survival Prediction with Deep Learning Mentor:Prof. Lin Luo, Peking University Developed an ensemble model to segment brain tumor from multimodal MRI scans, and predict patients' overall survival Ranked 2nd place and 5th place out of 60+ teams in 2018 MICCAI BraTS challenge on survival prediction task and segmentation task respectively, received prize from Intel AI Paper accepted by MICCAI BrainLes 2018 workshop (Spotlight) 	May 2018 - Aug 2018

Mar 2019 - Aug 2019 Beijing, China